Analysis of Arabidopsis genome-wide variations before and after meiosis and meiotic recombination by resequencing Landsberg erecta and all four products of a single meiosis.
نویسندگان
چکیده
Meiotic recombination, including crossovers (COs) and gene conversions (GCs), impacts natural variation and is an important evolutionary force. COs increase genetic diversity by redistributing existing variation, whereas GCs can alter allelic frequency. Here, we sequenced Arabidopsis Landsberg erecta (Ler) and two sets of all four meiotic products from a Columbia (Col)/Ler hybrid to investigate genome-wide variation and meiotic recombination at nucleotide resolution. Comparing Ler and Col sequences uncovered 349,171 Single Nucleotide Polymorphisms (SNPs), 58,085 small and 2315 large insertions/deletions (indels), with highly correlated genome-wide distributions of SNPs, and small indels. A total of 443 genes have at least 10 nonsynonymous substitutions in protein-coding regions, with enrichment for disease-resistance genes. Another 316 genes are affected by large indels, including 130 genes with complete deletion of coding regions in Ler. Using the Arabidopsis qrt1 mutant, two sets of four meiotic products were generated and analyzed by sequencing for meiotic recombination, representing the first tetrad analysis with whole-genome sequencing in a nonfungal species. We detected 18 COs, six of which had an associated GC event, and four GCs without COs (NCOs), and revealed that Arabidopsis GCs are likely fewer and with shorter tracts than those in yeast. Meiotic recombination and chromosome assortment events dramatically redistributed genome variation in meiotic products, contributing to population diversity. In particular, meiosis provides a rapid mechanism to generate copy-number variation (CNV) of sequences that have different chromosomal positions in Col and Ler.
منابع مشابه
Assaying genome-wide recombination and centromere functions with Arabidopsis tetrads (meiosisytetrad analysisycrossover interference)
During meiosis, crossover events generate new allelic combinations, yet the abundance of these genetic exchanges in individual cells has not been measured previously on a genomic level. To perform a genome-wide analysis of recombination, we monitored the assortment of genetic markers in meiotic tetrads from Arabidopsis. By determining the number and distribution of crossovers in individual meio...
متن کاملO-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملEffects of Temperature on the Meiotic Recombination Landscape of the Yeast Saccharomyces cerevisiae
Although meiosis in warm-blooded organisms takes place in a narrow temperature range, meiosis in many organisms occurs over a wide variety of temperatures. We analyzed the properties of meiosis in the yeast Saccharomyces cerevisiae in cells sporulated at 14°C, 30°C, or 37°C. Using comparative-genomic-hybridization microarrays, we examined the distribution of Spo11-generated meiosis-specific dou...
متن کاملMeiosis in living color: fluorescence-based tetrad analysis in Arabidopsis.
I n the process of meiosis, a diploid cell produces four haploid gametes, each of which carries but one copy of each chromosome. Before the two meiotic divisions, each set of homologs is composed of two fully replicated chromosomes, and thus four chromatids. At the first meiotic division, one homolog (composed of two sister chromatids) is segregated into each of the two daughter cells. The seco...
متن کاملARABIDOPSIS: A RICH HARVEST 10 YEARS AFTER COMPLETION OF THE GENOME SEQUENCE Shotguns and SNPs: how fast and cheap sequencing is revolutionizing plant biology
In 1998 Cereon Genomics LLC, a subsidiary of Monsanto Co., performed a shotgun sequencing of the Arabidopsis thaliana Landsberg erecta genome to a depth of twofold coverage using ‘classic’ Sanger sequencing. This sequence was assembled and aligned to the Columbia ecotype sequence produced by the Arabidopsis Genome Initiative. The analysis provided tens of thousands of high-confidence prediction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2012